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An algorithm based on the linearization method [l] is proposed for the num- 
erical solution of problems of optimization of elastic shells of revolution sub- 
j ected to static load. Shells with fixed parameters are calculated by the 
finite-difference method. Procedure for determining gradients of functionals 
obtained by solving equations of shell equilibrium, and of load gradients at 
stability loss by varying shell parameters is presented. Examples are given of 
optimization of the shape of shells of revolution, 

1. Equations of equilibrium and stability of shells of revolu- 

tion and methoda of their solution. Equations of equilibrium and stability 
of elastic shells of revolution subjected to axisymmetric load and an algorithm for their 
solution based on the investigations in [ 2 ] are presented below. The self - conjugate 

boundary value problems of equilibrium and stability are considered. 
The relations between increments of strain eii, curvature /~ij, and angles of ro- 

tation fit (i, j = 1, 2) of shell elements to increments of displacements U, U, and W 

at stability loss are assumed to be of the form 

(1.1) 

where s is the length of the meridian arc ; cp is the angle of rotation of the meridian 
plane about the axis of revolution taken as a coordinate on the parallel ; a is the dis - 

tance of the shell middle surface from the axis of revolution ; FJ is the angle between a 

normal to the middle surface and the axis of revolution ; RI and Rz are radii of curvature ; 
% U, and w are increments of displacements along the meridian, the parallel, and in 

the direction of the outward normal to the shell middle surface, respectively ; h is the 
eigenvalue representing external load ; I# is the angle of rotation of a shell element 
about a parallel in the precritical state when 3L = 1. Here, and in what follows sub - 
scripts 1 and 2 denote quantities at shell cross-sections orthogonal to the meridian and 
the parallel, respectively ; E is Young ‘s modulus, Y is Poisson ‘s ratio, and h is the 

shell thickness. 
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The increments of stress and rnoments at stability 
tional equations : 

2n s 

loss satisfy the following varia - 

where 6 is the sign of variation: Nij, Mij, and Qi (i, j = 1, 2) are increments 

of stress , moments, and shear forces, respectively, multiplied by the distance a from 
the shell axis of revolution ; Xl and ~2 are stresses in the subcritical state, whenh = 1, 

multiplied by a; the asterisks denote values of respective functions when s = 0 or 

s = S ( i. e. are either specified and equal zero or unknown f , 
In conformity with Hooke’s law we set 

k, = B vf,, - yfiJ22), k22 = B (Mzz - YM,,), k12 = B (l+v) M12r 

B = 12 (dw)-1 

Let us formulate conditions at the closed top of the shell of revolution, where s = 
a = 0, in the absence of concentrated forces there. In that case we must delete in 

the right-hand side of the variational equation (1.2 ) the integral of cp when s = 0. 
Carrying out the separation of variables Ge substitute into Eqs . (1.1) - (1.3 > the 

expansions of functions n, m, fit, ell, es2, krr, k22, Nllt N22, MIX, Mzz,andQI and 

u, Bz, elzr kIz$ iv12, M12, and Qstin Fourier series in cos rnrp and sin ~~,r~pectively, 

fm = 0, 1, 2, . * *). 
It follows from (1.2 ) that 

lim i [N ~~,,n~~,,,f(N~~, In + K”&, d hn + (91, m + (1.4) 
s+lJ m.=o 

ma-lM,,, m) W,, + Mrr, &%, ml = 0 

where the subscript m denotes coefficients at cos mcp and sin rnq in Fourier series 
of respective functions, 

The variations &u,,,, 6r.,,,, cYw,~, and 6&,,,, are not independent. At any arbi- 
trary point of the shell the following relationships are satisfied : 

u == -5 sin 0 + (E cm up + q Sin q) COs 0, c ---= 31 COS p-g SiIbqt (1.5) 

UT = r; cos 0 -t (g cos cp + 21 sin rp) sin 8 
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where $., “I, and c are increments of displacements of the shell middle surface at sta- 
bility loss in the directions Q, = 0 and 9 = n / 2 in the plane orthogonal to the 

shell axis of revolution and along that axis, respectively, Passing in (1.5) to limit with 
a -* 0 and s * 0 we obtain owing to the continuity of displacements the same 

formulas for the shell top, where s = 0 and E, 11, and 5 are independent of angle 9. 
Let us further assume that the angle between opposite meridians at the shell top re- 

main unaltered in the course of deformation. Then the angle of rotation of a shell ele- 

ment fir fs, cp) about the parallel satisfies at the limit s --f 0 the condition 0X (0, 
cp) = -PI (0, cp + n) and, consequently, its expansion in Fourier series contains 

only odd terms 

PI (0, T) = Z (Pr,ln cos mcp + pi, n sin mq) 
m=1,3,5,... (1.6) 

When s =.O , owing to the arbitrariness of variations of ?& c, and &,, #$z = 

1, 3, 5, * * .)9 from (1.4 ) - (1.6 ) we have the relationships 

U0 Cos 8 -+- wa sin 8 = 0, QltD cos 8 - Nrl,o sin 8 =2 0, fir,0 = 0 (m =O) 

rQ + U1 COS 9 = 0, Nlttl COS 8 - N1z,l -+ Q1,l sin 0 -+ j!j- 
( 
-$- - +) X 

I ? 
iv - 0 12,l - 

WI f 1.2~ sin 8 = 0, Mll,L = 0 fin = 1) (1.7 ) 

tn - -0 (m=2,3,4,5 ,I..) 

p”:_=_” ii-(?L,*,8, * 1 .)I M1l,nL = 0 fm z3.5, 7, * ..) 

which provide boundary conditions for the equations of stability with separated variables 

when s==O, 
Note that when m = 1 , the second of conditions (1.7 > is also implied by that 

the principal vector of forces acting at the boundary of the small circular neighborhood 

of the shell top projected on a plane orthogonal to the axis of revolution is equal zero, 
namely by the equality 

At the smooth (not conical) top of the shell of revolution 0 = 0, RI = a2 

when s = 0, and conditions (1.7 ) assume the form 

ua = 0, &,a = 0, &,o = 0 (m = 0) (1.3) 

zzr i_ Vi -2 0, N31,r - N&L == 0, wr=o, it&,,,=0 (m-1) 

which for m -- 2, $4,. _ . remains unchanged. 
Equations for the precritical state are derived from Eqs. (1.1) - (1.3 ) by cancel- 

ling in them terms that contain the eigenvalues &, and by taking U, u, w, pi, efj, 

kij, Nij, M,f, and Qi (iv j = 1, 2) as functions in the precritical stateand not as 
their increments , and adding to the right- hand side of Q, (1.2 ) the work of external 
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forces in the variations of displacements 

236 s 

JS (P& + P26v + ~384 a as dq~ 
0 0 

where PI, P2, and pa are components of external load. In the axisymmetric state 
v = #J2 = e12 = k12 = N12 = Ml2 = Q2 = p2 = 0. 

The equations of the precritical state and the equation of stability of the shell after 

the separation of variables are approximated on a nonuniform network of nodes using 
the finite-difference equations given in [ 2 1. 

The critical (bifurcation) loads at loss of stability for various numbers m = 0, 

1, 2, . . . of waves on a parallel are determined as the lowest, in absolute value, 
eigenvalues a of the finite-difference equations of stability obtained by the method of 
iterations [ 3 ] for respective numbers m . 

If eigenvalues of different signs are present and the calculated eigenvalue corres - 

ponds to a load in opposite direction (of opposite sign) to be considered one, the eigen- 
value of required sign may be obtained by a shift of the eigenvalue spectrum [ 3 1. In 
the numerical examples presented below the eigenvalues of the lowest absolute value, 
determined by the method of iterations, related to a load of specified direction, and it 
was not necessary to shift eigenvalues . 

Since the equations of the precritical state and those whose solutions are used for 

determining eigenvectors in the iteration process differ from equations that correspond 
to the last nodes of finite-difference approximations only by coefficients, numbers m , 
and vectors in their right-hand sides, hence they are solved jointly using the same com- 
puter program. They are transformed in three-point finite-difference equations ( each 
equation contains unknown functions only in three adjacent nodes) in four network func- 
tions u9 r, w, and M,r with symmetric matrices of coefficients and are then solved 
by the method of matrix runs [ 4 1. 

2, Determination of stress intensity gradients and of load at 
stability loss by varying shell parameters. Stress intensity at any arbi- 
trary point of the shell has the form of functional 0 = @ (c, X) of the finite-dim- 
ensional vector of the shell variable parameters c = (cl, ~2, . . ., ck) and of solution 

X of the finite-difference equations of the precritical state, which are of the form [ 2 ] 

AoX = f (2.1) 

where As is a symmetric matrix of coefficients ; f is the load vector; X is the vector 
of network functions of displacements, stresses, and moments determined at nodes of the 
network of the finite-difference approximation. Matrix -40, vector f , and consequently, 
also vector X depend on the shell variable parameters c. 

Gradient 0 (c, X) is determined in terms of c as follows. By varying @ (c, X), 
we obtain 

A@ c (I$% + @**6X 

where @, and @x are vectors of partial derivatives of @ with respect to corn - 
ponents of vectors c and X,respectively , and the superscript T. denotes the transposition 
of a column vector to a row vector, 
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Solving the system of equations 

AOY = @‘x (2.2 1 

we obtain 

a@ = O,,T6C + YTA,,6X = DcT6C + Y T (Sf - GAoX) = 8cTV@ 

Variations 6f and 6Ao are expressed in explicit form in terms of 6c, and the 
gradient VQ of functional @ is defined in terms of c as the vector of coefficients 
of components of vector 6c. 

Note that systems (2.1) and (2.2) differ only by the vectors in their right-hand 

sides and are, consequently , solved jointly on the same computer program. 
The load at stability loss is determined as the smallest eigenvalue h of the finite- 

difference stability equations of the form [ 21 

AU = ?uBU (2.3 ? 

where A and B are symmetric matrices of coefficients calculated for m waves of the 
shell shape along the parallel at stability loss for which a is minimum (matrix A, in 

(2.l)isthesameas A when m = 0 , and u is the vector of Fourier series at cos 

mcp and sin mcp of increments of displacements, stresses and moments at nodes of 
the finite-difference approximation at stability loss. 

The variation of k is determined as the variation of the eigenvalue to which cor- 
responds the unique eigenvector U by formula 

61 = UT (6A - h6B)UI(UTBU) (2.4) 

Number m is not varied, since its effect on ?L is minimal. 
Matrix B depends on stresses XI and ~2 , and on the shell angle of rotation ?/I 

in the, precritical state, which are all functions of parameters cl, c2, . . . , CL. Vari - 
ations 6x1, 6x2, &I# appear in (2.4) in the form of the scalar product YIPsTGX, 
where Yx is the vector of partial derivatives of the Rayleigh ratio Y = UTAU / 

(UTBU) with respect to components of the vector of functions of the shell precritical 
state at nodes of the finite-difference approximation X. 

After solving the system of equations 

we carry out the transformation 

A,,Z = Yz (2.5 1 

YxT6X = ZTAoGX = ZT (Sf - GAoX) 

and obtain 6h = Gc*Vh which is used for determining the load graclient VA in terms 

of parameters Cl? c2, - - -, ck at stability loss as the vector of coefficients at com- 

ponents of vector 6c.. 
The determination of stress intensity gradients and of load at stability loss thus re- 

quires the solution of problems (2.2 ) and (2.5 ) for the finite-difference equations of the 

shell precritical state. 

3. The optimization algorithm, We use the linearization method [l] 
for shell optimization, which entails successive Variation of parameters Cl, C2, . . . , Ck, 



540 V. N , Solodovnikov 

which may specify the shape of the shell middle surface, its thickness, modulus of el- 
asticity , etc. , whose input values are arbitrary. 

We shall describe the algorithm for determining a shell whose material volume y 
is minimum, with the bifurcation load P* defined as the lowest eigenvalue of the 
finite-difference stability equations, is not lower than the specified Pn (p.+ > pn), 
and the intensity of stresses Or and 0s at the precritical state along the meridian and 

the parallel ,respectively,under load p < pB does not exceed the admissible stress 

GB, i. e. u* < (In, where u, = max a, 0 < s < S, and u is the maximum in- 
tensity of stresses (ora _ cfiua + use)% across the shell thickness for fixed 8. 

Direction of the vector of increments of parameters Cl, C2, - - -, % at any single 
step of the optimization process is determined by vector b obtained from the solution of 

the following problem, Determine the maximum of (bTVfO (c) + ‘12bTb) under the 
condition that 

where C is the considered point of values of Cl, Cz, . . ., ck; the superscript T de - 
notes the transposition of a column vector to a row vector; kv = ConSt is the factor 
of transition to dimensionless quantities, and Uh is calculated for p = PB. 

The vector of increments of parameters cl, Cz, . . . 1 Ch is assumed to be AC = 

b I Zi, where i is the first of numbers 0, 1, 2, . . . for which the inequality 

fo (c + AC) + A J’ (c + AC) < fo (c) + AF (c) - 2-* (bTb)%’ 

F (4 = max (0, MC), f2 (4, 0 < 8’ < 1 

where the number A > 0 must be greater than the sum of Lagrange multipliers of 
problem (3. l), is satisfied. Numbers kv, E, and E’ determine the admissible length 

of vector AC. In numerical examples presented below these numbers were selected so 
that vector b can be taken as vector AC , which considerably reduces the volume of 
calculations. From the selected point c we pass to point c + AC which is then taken 

as the input point for the next optimization step _ 
Note that o+ and &are not continuously differentiable ~n~~ons of Cl, 4, . . ., Ck. 

If o attains its maximum value at more than one point of the shell, and the variation 
of parameters c in the direction determined by the gradient of IT at only one point re- 

sults in an inadmissible increase of u at other points of the shell where it was close to 
o*y then it is necessary to impose in problem (3.1) constraints on the increments of 

o at such points, Similarly, in the case of bunching of the spectrum of eigenvalues of 
shell stability equations around the eigenvalue of Pz it may be necessary to impose 
constraints on the increments on some eigenvalues closest to that of P+* and determine 
the variation of P+r taking into account all of its corresponding eigenvectors , if there 

are more than one of these. In the examples considered below such refinement of the 
algorithm was not necessary, 

In the problem of optimization of a shell subjected to inertia forces induced by 

uniformly accelerated motion (or, what is equivalent, by its own weight) we find 
maxc min (g:&, g D , where g, is the lowest acceleration of motion at which loss of ) 
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shell stability takes place, and ga is the acceleration at which the maximum intensity 
of stresses be equals the specified Us. Owing the linearity of equations of the pce- 
critical state, 0, varies in praportion to acceleration, hence ga = gUn 1 o* 9 where 

0, is calculated for an acceleration equal g. 
Using the algorithm of minimax determination [ 11, we determine the direction of 

an optimization step by vector b for which the quantity (p + liibTb) is minimal with 
respect to p and b under the condition that 

fi @) + bTVi 04 + P > 0, if f;(C)<F(C)-ta (i=1,2); e>O (3.2) 

(A (c) = B+ (~1 I FCgr fa (~1 = g, (c) I &, F (c> = min (fl fcf7 f2 @N> 

where J%~ = con& is the coefficient of transition to dimensionless quantities. Grad - 
ient g, of parameters cr, q, . . . , ck, as well as the gradient of pr: in problem (3. l), 
is calculated as the gradient of the simple (not multiple) eigenvalue of the finite-dif- 
ference equations of stability. 

The vector of increments of parameters Cl, C2, . . .V Ck is assumed to be AC = 

b / 2i, where i is the first of numbers 0, 1, 2, . . . for which the inequality 

F (c + AC) < F (c) - 2-i (bTb)%‘, o< &‘<,I 

is satisfied ; From point c we pass to point c + AC, and so on, 
Vector b in problems (3.1) and (3.2) is obtained by testing all possible solutions 

by the Kuhn - Tucker condition. 

4. Results of calculations. The following numerical examples illustrate 
the optimization of the shape of elastic shells of revolution of constant thickness, whose 
generatrices are defined by functions of the form 

4 

Z co9 ty - cos y 
-= 
a -I- 

N sioy c 
ci (1 - P) 

i=o 
4 

a 
-= 
aN 

3 + c Ci+4t (i - P)) 0,<t<* 
i=l 

where a is the distance of the shell middle surface from the axis of revolution ; z is the 
distance measured along the axis of revolution ; at the shell top t = 0 and a = Ct, 

while at the rim t = 1, 2 = 0, and a = a~; coefficients Y, ~0, ~1, - . .) cs are in- 

dependent of t. When co = cl= . . . =Q = 0 these functions define a spherical shell. 

The Poisson’s ratio is assumed to be Y = 0.3. 
When solving equations of shell stability, the iteration process was terminated when 

eigenvalues A, displacements l(, p, and UJ, and moment MI, at nodes S, (n = O,l, . . . 

*, 50) of the finite-difference approximation at the r- th and (r i- I)-.st iterations 

satisfied inequalities of the form 

where the superscript denotes the iteration ordinal number and the subscript, that of the 
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node s,. The number of nodes of the finite-difference approximation 0 = s,, < S, < 
. . . < sbo = S was 50 with a step (snql -+J / S = 0.025, 0 < n < 29; 0.015, 30 < 

0 0.5 

Fig. 1 

In the first example the volume of material of the 
shell subjected to a nonuniform hydrostatic pressure of 

intensity q (1 - 0.1 ii / UN) (coefficients 4 = coust) 
was minimized off the aSSUmptiOn that Q* > 4s and 

ok* < on for 4 = Qn where ris is the value of q at loss of the shell stability, CF* is the 
maximum stress intensity in the precritical state, and au and 4n are specified quantities. 

Conditions of hinged support with all displacement components and bending mo- 
ments equal zero were assumed to apply at the rim. 

The optimization process was first applied to a spherical shell of diameter R = 2~~ 
and thickness 1~ =I h,, = aN / 10 with y = 150”, cg = cl= . . . =cS = 0. For such 

shell q* = Yc =: tl.002225 E, B, = 14.94 q, crB = CT,, = 0.0333 E when q = qB. Its 

generatrix is shown in Fig, 1 prior to deformation by the solid line circle segment, in 
the precritical state by the dash-dot curve 0 , and by the dash line at stability loss with 

JPZ = 0 in the meridional cross section where displacement in the circumferential 
direction is ZJ = 0 and a dent appears in the shell. In Figs. 1 and 2 load vectors are 
indicated by arrows. 

Let us now vary the shell thickness h and parameters ~0% cl, . . ., cg maintaining 

the internal volume and radius &N of the shell, and angle Y constant. As the result of 
optimiza~on for nearly constant o, and 9*, the volume of shell material was reduced by 
approximately 15% for h = 0.8481 ho, co = 0.09616, cI = -0.02188, c2 = -0.04696, 

c3 = -0.06885, cq = -0.08909, c,=-0.0@2743 , ca=0.001229, ci = 0.01123, es = 0.02393. 
The shape of the last shell is shown in Fig. 1 by the dash-dot curve 1. The spectrum of 
critical values of // in terms of the number m = O,i,% s.* of waves of the shape along 
the parallel at stability loss is shown in Fig. 2 for the initial spherical and the last opt- 

imal shells by solid and dashed lines, respectively (q” = 10%~ / E). 
The optimal shape of a shell of revolution with a fixed rim (u = v = w = pi = 0 

and s = S) subjected to inertia forces induced by uniform acceleration along the axis 

of revolution 2 is determined in the second example. The shell thickness h and dis - 
tance QN are fixed, and h / aN = 0.02. Unlike in the first example, the internalshell 
volume is not fixed, The quantities Y, co, ~1, . . -, c6 are varied. 

An initially spherical shell is considered for which Y = 30’, CO = cl= . . . = ~8 = 0, 
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and 2 (O)= (2 - vq aN z 0.268 aNtthe volume of material V=i.O72 nho N2, the 

maximum stress intensity in the precritical state o* = 1.735puNg (p is the unit vo- 

lume mass of the material and g is the acceleration of the shell motion), and the low- 

est g at which stability loss occurs in 8* = O..OO6i41 E / (~a~). It is assumed that the 

maximum stress intensity ok of this shell occurs when g = go = g*, hence og = 

1.735 pg,a, = 0.01065 E. 

Q a5 I 

Fig. 3 

Fig, 4 
The shell whose generatrix is shown in Fig. 3 by the solid curve was determined with the 

use of the optimization algorithm described in Sect. 3. For this shell Y = X%7’, Co = 
0.09529, ci = 0.03703, c2 = 0.03479, cg = 0.04321, cI = 0.05348, cII = -0.03405,~~ = 
-0.03204, c1 -O.O233O,c, = -0.01369. The volume of its materialis by approximately 
2fl0 greater than that of the initial spherical shell. The maximum stress intensity o, = 
0.7505 pgaN and the lowest acceleration at which stabi~ty loss occurs g* = 0.01685 E I 
(palv). Stress us reaches the maxi~m admissible value og , before loss of shell stability 

takes place, at acceleration g, = 0.0142 E / (~a~) which is more than twice higher than 
the acceleration g = 0.006141 E / (paN) admissible for the initial spherical shell. 

Shapes of the optimalshell generatrix are shown in Fig. 3 by the dash- dot curve 0 for 
the pcecriticalstate and by the dash curve at stability loss (m = ? ) . The spectrum of 
critical accelerations g that correspond to stability loss with m = 0,1,2, . . . waves along 
the parallel is shown in Fig. 2 by curve 1 (go =1Oa gpa, / E) , while the lower curve 0 
defines that spectrum for the initial spherical shell. 

The maximumstress intensity u as a function of the shell thickness s for the initial 
spherical and the optimized shells in the subcritical state is shown in Fig. 4 by curves 0 and 
1, respectively. Optimization obviously leads to a srn~~~g of distribution of u along 

the shell length. 
The stressed state of the optimal shell is close to the zero-moment state. In Fig. 4 
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the dash-dot and the dash lines show the ratio ‘u of stress intensity at the shell middle 
surface to its maximum value across the shell thickness as a function of s for the initial 
spherical and the optimal shells, respectively. 

It should be noted that in these examples the obtained shells are sensitive to devi- 
ations from their shape. Thus in the last example the admissible acceleration g = g, = 

0.00717 E / (purr) for the shell obtained by an additional variation of the optimum 

shell parameters, shown in Fig. 3 by the dash-dot curve 1, is half of that for the shell 
taken as optimal shown in that figure by the solid line. In that case loss of stability 

takes place at acceleration e, = 0.0105 E I @aivj, Hence the possibility of actual re- 
duction of the maximum stress intensity and of stability improvement of shells considered 
above by varying their shape is i~~g~ficant . 
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